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SUMMARY 
Free transverse vibration of a circular plate is considered by assuming the displacement components as an 
infinite series in the thickness coordinate. The analysis is done by retaining only the first two terms in each 
series. The equations of motion are derived by Hamilton's energy principle and the solutions are obtained in 
terms of Bessel functions. Numerical results are compared with the classical and shear theories which are 
particular cases of the present theory. 

1. Introduction 

An up-to-date account o f  almost all the work performed on vibration o f  plates is given by Liessa 

[1,2]. Most of  the work is based either on classical theory or on the shear theory given by 

Mindlin [3]. The present paper considers free transverse axisymmetric vibrations of  a circular 

plate by assuming the displacement components as infinite series in the thickness coordinate and 

retaining only the first two terms in each component.  The shear and classical theories can be 

considered as particular cases of  the present theory. The equations of  motion are derived by 

Hamilton's energy principle. They are solved for harmonic vibrations with the help of  auxiliary 

variables. The solutions are obtained in terms of  Bessel functions. The frequency equation is 

obtained for a plate clamped at the circular edge. Numerical results computed for the first four 

normal modes of  vibration are compared with those of  shear and classical theories. 

2. Displacements, strains and stresses 

We consider a circular plate of  radius a, thickness h, density p, Young's modulus E and 

Poisson's ratio v. The plate is referred to cylindrical coordinates r,O,z by taking the axis o f  the 

plate in the line r = 0 and the middle plane of  the plate in the plane z = 0. The displacement 

components u,v,w in r,O,z directions are taken to be 
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u (r,z, t)  = zu l  (r,t) + ( z3 /h2)u3(r , t )  + (z s/h4)us(r,t) + . . . .  

v (r,z,t)  = 0, (1) 

w(r,z , t )  = wo(r , t )  + (z /h )2wz(r , t )  + (z /h ) a w ,  (r,t) + . . . .  

where t denotes the time. 

Retaining only the first two terms in the series of u and w, and using the strain-displacement 
relations given by Love [4], the non-zero strain components are obtained to be 

er =ZUl , r+( za /h2 )u3 , r ,  60 =ZUl / r  + ( z 3 / h Z ) u 3 / r  

(2) 
ez = 2 z w z / h  z,  ezr = ul  + Wo,r + (z /h)Z(3ua + w2,r), 

where a comma followed by a suffix denotes the partial differentiation with respect to that 
variable. 

The stress-strain relations are taken to be 

Or = (~ + 2t~)er + X(eo + ez ), Oo = (~ + 2ta)eo + ~(ez + er), 

Oz = (~ + 2la)ez + ?~(er + eo), Ozr = Iaezr, 

where • and/a are the Lam~ constants. 

(3) 

3. Equations of motion 

The equations of motion, obtained by applying Hamilton's energy principle in a manner similar 
to Herrman and Mirsky [5], are 

mr, r + (mr - m o ) / r -  qr = Ph3(ul ,  t t /12 + u3, t t /80) ,  

Sr, r + (st - so)/r  - 3Pr = PhS(ul ,  t t /80  + u ~ t t / 4 4 8 ) ,  

qr, r + qr/r = ph(wo~tt + w2, t t /12) ,  

Pr, r + Pr/r ± 2mz = oh a (Wo, t t /12 + w2, t t /80) ,  

and the edge 
products: 

m r u l ,  sru3, qrWo, PrW2, 

where the stress resultants are given by 
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conditions are obtained by prescribing one member of each of the following 
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(9) 

4. Introduction of auxiliary variables 

To get a comparatively simpler system of equations, we introduce auxiliary variables in the 

following manner: 

(Ul,U3,Wo,W2) = (UI ,R, U3,R,aWo,aW2) exp(iwt), (10) 

where exp(i~ot) is the time factor for steady-state vibration, co is the circular frequency, R = r/a 
and U1, U3, Wo and W2 are functions of R only. 

With the help of eqs. (2), (3), (9) and (10), the eqs. (4) and (5) reduce to equations which 

can be integrated completely with respect to R to give 

20[H2(LV 2 + ~22) - 12K]U1 + 3[H2 (LV 2 + ~22) - 12K]U3 

- 240KWo + 20MW2 = 0, (11) 

28[H2(LV 2 + ~22) - 20K] Ul + [5H2(LV 2 + ~22) - 252K] U3 

- 560KWo + 28NW2 = 0, (12) 

and the eqs. (6) and (7) reduce to 

12KV 2 U1 + 3 K ~  2 U3 + 12(KV 2 + ~22)W0 + (KV 2 + ~22)W2 = 0, (13) 

20MHzV2U1 + 3NH2U2U3 _ 20H2(KU 2 + ~2Z)Wo 

_ [3H2(KV2 + ~2 )  _ 80L]W: = 0, (14) 

where 

K = 1/(2 + 2v), L = (2 - 2u)/D, M = (6u - 1)/D, • 

N = (10v - 3)[D, D = K[(1 - 2u), H = h[a, (15) 

V 2 =-(d2/dR2)+(1/R)(d/dR), ~22 =pa2w2/E. 

In the above equations I2 is the frequency parameter. The arbitrary constants arising from 
integration in eqs. (11) and (12) are set equal to zero without any loss of  generality. 
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Solving eqs. (11) to (14) for T, where Tstands for any one of the variables Ul, Ua, Wo and 

W2, we get 

(aoV s + a l ~  6 + a 2 ~  4 + a 3 ~  2 + a 4 ) T =  O, (16) 

where 

ao = K 2 L 2 H  6, 

a l  = [ 2 K L ( K  + L)H2122 - 1 5 K : L ( 6 K  + 5 M -  7N) + K L ( 9 3 . 7 5 M  2 

+ 78 .75N 2 - 60L ~ - 157.5MN)]H*, 

a2 = [(K s + L  2 + 4KL)H¢~24  + 15{K2(6K + 18L - 5 M -  10.5N) 

- K L ( d L  - 7 N  + 5M) + K(5 .25N 2 - 10.5MN + 6.25M 2) 

+L(6 .25M 2 - 4 L :  - 10.SML + 5 .25N2)}H2~  2 

+ 2100K2(4L 2 - K 2 - 2KA4 - M2)]H 2 , (17) 

a3 = 2(K + L)H~126 + (78.75N 2 - 270K:  - 120L 2 - 240KL 

+ 105KN - 75KM - 157.5MN + 93.75M2)H412 4 

+ {2100K2(2L - K - M) + 45K(240L 2 - 21N 2 + 70MN - 105M: }H212 2 , 

a4 = H 6128 - 60(3K + L)126H 4 + 240K(7K + 45L)~24H 2 - 100800K2L 2122. 

5. Solution 

The general solution of the Bessel equation 

(x72 + p 2 ) T =  0. (18) 

will also be a solution of eq. (16), provided 

aop a - a l P  6 +a2P 4 - aaP 2 +a4 = 0. (19) 

This equation is a bi-quadratic equation in p2. In actual computation, out of the four roots of 

this equation, one comes out positive and the other three come out negative. If these roots be 

denoted by p~, -p~ ,  -p~  and - p ] ,  then the general solutions for U1, Us, W o and W 2 can be 
taken as 
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4 

(U,,U3,Wo,W2)= ~ (1,BcoCa,Da)AaFa(Rpc~) ' (20) 
t ~ - - 1  

where F1 = Jo, Fa = Io for a = 2, 3, 4. Jo and Io denote the Bessel and modified Bessel 
functions of first kind and order zero. The Aa's are arbitrary constants;Ba, Ca and D a can be 

obtained by solving any three of the eqs. (11) to (14) after substituting the solutions (20) in 
them. 

6. Frequency equation 

If we take the plate clamped at the circular edge then the edge conditions are 

u l = u a = w o = w 2 = 0 ,  a t R = l  (21) 

Substituting solutions (20) in (10) and then using (21), we get 

J,(p,)A, - I,(p2)A2 - I 1 ( P 3 ) A 3  - / 1  ( p 4 ) A 4  ----- 0 ,  

B1J,(PI)A1 - -  B2I,(p2)A2 - B311(P3)A3 - -  B411(P4)A4 = 0, 

C, Jofp,)A, + C2Iofp2)A2 + C3Io(P3)A3 + C, Io(p4)A4 = 0 ,  

(22) 

D,Jo(p , )A  , +D2Io(P2)A2 +D3Io(P3)A3 + D4Io(p4)A4 = O. 

Eliminating AI to A4 from these equations, we get the frequency equation in the form of a 
fourth-order determinant equated to zero. This determinant involves the frequency parameter 
implicitly. Successive zeros of the determinant give frequencies of vibration for successive 
normal modes. 

Retaining only the first term in the series for u and w given in eqs. (1), proceeding in a 
manner similar to above and introducing a shear constant in the shear force, we can get the 
frequency equation for the shear theory. The frequency equation for the classical theory can be 

obtained by replacing u~ by -Wo, r and retaining only the first term in u and w. 

7. Numerical results 

The frequency parameter g2 versus H, computed for the present theory (P-theory), the shear 

theory (S-theory) and the classical theory (C-theory), for the first four normal modes of 
vibration is plotted in Fig. 1. It is clear that the values of I2 in the S-theory are smaller than the 
values in the C-theory but greater than those of P-theory in all the four modes of vibration and 
for all values of H up to H = 2.4. The difference between the S- and C-theories goes on 
increasingly rapidly as we go to higher values of H or to higher modes of vibration. But the 
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difference between S and P-theories in the fundamental mode increases a little with an increase 

in H. It remains almost constant in the first mode and it decreases in the second and third 

mode. 
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